
Towards Interface-Driven COTS Binary Hardening
Xiaoyang Xu
Wenhao Wang

Kevin W. Hamlen
The University of Texas at Dallas
Computer Science Department

Richardson, TX, USA

Zhiqiang Lin
The Ohio State University

Computer Science & Engineering Department
Columbus, OH, USA

ABSTRACT
Hardening COTS binary software products (e.g., via control-flow
integrity and/or software fault isolation defenses) is particularly
difficult in contexts where the surrounding software environment
includes closed-source, unmodifiable, and possibly obfuscated bi-
nary components, such as system libraries, OS kernels, and vir-
tualization layers. It is demonstrated that many code hardening
algorithms, when applied only to the user-level software products
in such environments, leave open critical vulnerabilities that arise
from mismatches between the application-agnostic security poli-
cies enforced by the system modules versus the application-specific
policies enforced at the application layer.

To overcome this problem, a modular approach is proposed for
hardening application-level software in such environments without
the need to harden all other software in the environment with ex-
actly the same protection strategy or policies. The approach embeds
application-level protections within objects shared by interoperat-
ing modules. Modules that obey their interface specifications there-
fore receive an appropriate granularity of protection automatically
when they invoke shared object methods. Experiences developing
and refining this approach for Microsoft Windows environments
are reported and discussed.

CCS CONCEPTS
• Security and privacy→ Software security engineering; Soft-
ware reverse engineering;

KEYWORDS
control-flow integrity, object-oriented software, component-based
software

ACM Reference Format:
Xiaoyang Xu, Wenhao Wang, Kevin W. Hamlen, and Zhiqiang Lin. 2018.
Towards Interface-Driven COTS Binary Hardening. In The 2018Workshop on
Forming an Ecosystem Around Software Transformation (FEAST ’18), October
19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3273045.3273051

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FEAST ’18, October 19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5997-9/18/10. . . $15.00
https://doi.org/10.1145/3273045.3273051

1 INTRODUCTION
Hardening binary software applications against low-level exploits
(e.g., control-flow hijacking and code reuse attacks [5, 18]) is widely
recognized as an important step in defending software ecosys-
tems. Software Fault Isolation (SFI) [23] and Control-Flow Integrity
(CFI) [1] are two important examples of such hardening. Imple-
mentation approaches include XFI [6], PittSFIeld [12], Reins [27],
STIR [26], CCFIR [30], bin-CFI [31], BinCC [24], Lockdown [16] Ty-
peArmor [22] and OCFI [13]. However, most hardening techniques
in the literature assume that interoperating software components
are all hardened in the same way, using the same code transforma-
tion algorithm. For example, XFI’s binary transformation entails
instrumenting all reachable control-flow transfer instructions in
all modules with guard code that checks for XFI-added security
labels at jump destinations. This uniformity of enforcement is a
prerequisite assumption of XFI’s proof of safety [2].

VTable protections, which include source-aware [3–5, 8, 10, 11,
20, 28] and source-free [7, 17, 29] approaches for preventing or
detecting vtable corruption at control-flow operations involving
vtable method pointers, likewise typically require that all call sites
where such pointers might be dereferenced must be uniformly
instrumented with common guard code in order to be effective.
If some pointers flow to call sites located within other modules
compiled with a different pointer protection mechanism, control-
flow security cannot be guaranteed.

Unfortunately, a large number of mission-critical software envi-
ronments include diverse, interoperating components that are not
all secured in exactly the same way. For example, the user inter-
faces of many critical infrastructure applications are implemented
atop Microsoft Windows OSes, which purvey essential services
to binary applications via closed-source, binary system libraries.
These libraries are difficult to modify for a variety of reasons: some
are digitally signed, others are aggressively optimized in ways that
frustrate accurate disassembly even by the best reverse-engineering
tools, and some are loaded dynamically (e.g., from cloud services)
as applications execute and discover they need particular services.
Similarly, many event-driven Linux applications are implemented
atop toolkits such as GTK+1, which dynamically serve user inter-
face widgets and supporting library code on-demand, and which
therefore may have been separately compiled with a diverse variety
of different protection strategies.

Although recompiling the universe of all software components
with some uniform protection scheme is obviously one option for
coping with this problem, doing so is unrealistic for many operat-
ing contexts. This motivates the development of a more modular

1https://www.gtk.org

https://doi.org/10.1145/3273045.3273051
https://doi.org/10.1145/3273045.3273051
https://doi.org/10.1145/3273045.3273051
https://www.gtk.org

untrusted trusted

o1, object reference
created by calling
CoCreateInstance

IWiaDevMgr vtable pointer

QueryInterface

AddRef

Release

EnumDeviceInfo

CreateDevice

SelectDeviceDlg

SelectDeviceDlgID

GetImageDlg

RegisterEventCallbackProgram

RegisterEventCallbackInterface

RegisterEventCallbackCLSID

AddDeviceDlg

o2, object reference
passed by calling
IWiaDevMgr::

RegisterEventCallbackInterface

IWiaEventCallback vtable pointer

QueryInterface

AddRef

Release

ImageEventCallback

Figure 1: Object binary representation

methodology for hardening application code that relies on services
implemented with diverse protections, but without the need to mod-
ify or even disassemble interoperating binary modules on which
the application relies.

This paper reports on our experiences with a new interface-
driven approach to securing commercial binary software products
with component-driven design, and large, object-oriented APIs
with thousands of vtable and method exchanges between dissimilar
modules. Inspired by Object Flow Integrity (OFI) [25], our approach
statically synthesizes CFI/SFI-preserving wrapper modules for im-
mutable system modules from their interfaces. This facilitates a
stronger form of SFI/CFI protection for COTS binary Windows
applications than was previously possible without modifying the
OS kernel and system libraries.

The remainder of the paper proceeds as follows: Section 2 demon-
strates how applying previously published CFI hardening to appli-
cation code without applying the same hardening to interoperating
system modules results in exploitable critical vulnerabilities. Sec-
tion 3 summarizes our interface-driven approach for closing such
vulnerabilities without modifying system modules, followed by a
detailed case-study in Section 4. Section 5 discusses future work
directions, and Section 6 concludes.

2 ATTACK EXAMPLE
CFI and SFI binary hardening algorithms typically work by instru-
menting all indirect jump sites in the software with guard code that
blocks jumps to illegal destinations at runtime. This prevents many
forms of control-flow hijacking, including many code-reuse attacks.
However, when the enforcement cannot retrofit all modules, jumps
in unmodified modules may remain unguarded, or guarded by a
different and possibly inconsistent safety mechanism. This becomes
problematic when interoperating modules exchange code pointers—
a common practice of object-oriented software that shares objects.

1

Untrusted Module
CoCreateInstance(⟨clsid⟩, . . . , ⟨iid1⟩, &o1);

2 o1→RegisterEventCallbackInterface(. . ., o2, . . .);

3

Trusted Module
o2→AddRef();

Listing 1: Code that registers a running application Win-
dows Image Acquisition (WIA) event notification

1 MOV EAX, ⟨object⟩
2 MOV ECX, DWORD PTR DS:[EAX]
3 . . .

4 PUSH ⟨arguments⟩
5 . . .

6 PUSH EAX
7 CALL DWORD PTR DS:[ECX + ⟨index⟩]

Listing 2: Function call in assembly

In such cases, the disparate guard code can fail to enforce the pro-
tection scheme expected by cross-module callees.

One approach to this problem is to secure the objects passed
to uninstrumented modules at call sites within the instrumented
modules (e.g., [21]). But this approach fails when trusted modules
retain persistent references to the object, or when their code ex-
ecutes concurrently with untrusted module code. In these cases,
verifying the object at the point of exchange does not prevent the
untrusted module from subsequently modifying the vtable pointer
to which the trusted module’s reference points (e.g., as part of a
data corruption attack). TheseCOnfused DEputy-assisted Counterfeit
Object-Oriented Programming (CODE-COOP) attacks [25] deputize
the receiving module [9] into violating the control-flow policy by
passing them counterfeit objects [19].

Before a detailed walkthrough of a CODE-COOP attack, we first
show how objects are typically exchanged between modules with
object-oriented interfaces. Listing 1 provides a code snippet dis-
sassembled from a Microsoft Paint binary. For this example, we
assume that the Paint application code is untrusted, whereas the
system DLLs it loads are trusted. The application code first creates
a shared object o1 (line 1), where ⟨clsid⟩ and ⟨iid1⟩ are numeric
identifiers for the desired system class and its IWiaDevMgr interface,
respectively. Method RegisterEventCallbackInterface is then
invoked to register a running application Windows Image Acquisi-
tion (WIA) event notification (line 2). This method takes argument
o2, which is a pointer to the IWiaEventCallback interface that the
WIA system uses to send the event notification.

While executing RegisterEventCallbackInterface, the trust-
ed system module calls object o2’s Addref method (line 3), which
increments the reference count for the object. Listing 2 exhibits
the code at the assembly level. The object is first moved to register
EAX (line 1), and its method table is moved to register ECX (line 2).
Then all arguments are pushed onto the stack (line 4), including
the object (line 6). In the end, the corresponding method is called
by indexing the method table (line 7).

Our attacker model assumes that untrusted modules might be
completely malicious, containing arbitrary native code, but that

they have been transformed by a CFI algorithm into code compli-
ant with the control-flow policy. Unfortunately, the code snippet
in Listing 1 is vulnerable to CODE-COOP attack even with CFI
protections enabled for the untrusted module. Such protections
prevent the function call on line 2 from violating the control-flow
policy, but line 3 is not protected in the same way because it resides
in an unmodifiable system library. Argument o2 passed into the
trusted module can therefore potentially be corrupted to escape the
CFI sandbox.

An object reference o2 cannot be simply treated as a function
pointer (e.g., for a signature check) because the reference points
to an object containing a vtable pointer, as illustrated in Figure 1.
The vtable stores many method pointers. Some of these methods
create and return more objects containing new vtables and method
pointers when called, creating a complex web of interconnected
code pointer exchanges. Since dynamically generated vtables fre-
quently reside in untrusted, writable memory, a data corruption
vulnerability (e.g., buffer overwrite) can potentially replace the
vtable of o2 with a counterfeit one. This malicious replacement can
happen after the function signature check (e.g., if the application
is multithreaded or the callee retains a persistent reference to the
object).

Thus, the counterfeit vtable can reroute object o2’s method
Addref call to any location specified by the attacker (line 3). The
policy mismatch occurs because the destination of the Addref call
is computed from an untrusted code pointer, but the call site is
located in a trusted, unmodifiable system library and cannot be
instrumented directly with guard code.

Cross-module control-flow hijacks are recognized as a significant
class of code-reuse attacks in practice. For example, they have been
leveraged to hijack Chrome from within Google Native Client by
exploiting differences between the CFI policies enforced by different
interoperating browser modules [15]. Prior work has advanced
compiler-side solutions that require recompiling all modules to the
same protection strategy [14], while OFI [25] is currently the only
proposed binary solution.

Our work is the first to admit and harmonize differing protection
strategies through automated binary interface synthesis. The next
section proposes a modular, source-free approach to this that avoids
directly modifying any trusted modules.

3 TECHNICAL APPROACH
Our proposed solution instruments untrusted application binary
code in such a way that trusted callee modules (i.e., potential victim
deputies) never receive writable code pointers from untrusted, CFI-
protected callers. Placing the entire object in read-only memory is
infeasible because objects typically contain writable data adjacent
to the vtable pointer, which cannot easily be moved without break-
ing the application. We therefore instead automatically substitute
shared objects with read-only proxy objects when they flow across
an inter-module trust boundary. All proxy objects and their vtables
inhabit read-only memory so CODE-COOP attacks cannot corrupt
proxy vtables.

Instrumented modules retain direct references to the original ob-
ject, allowing them towrite to data fields, but uninstrumented object
recipients receive a read-only proxy. This works because modern

...

object
reference

vtable pointer

wrapper pointer 1

wrapper pointer 2

wrapper pointer 3

wrapper pointer 4

Figure 2: Proxy object binary representation

binary-level object exchange protocols, such as Component Object
Model (COM), enforce an abstraction layer that requires object re-
cipients to access data indirectly via accessor methods. (This allows
shared objects to be located on remote machines during RPC.) As
illustrated in Figure 2, our proxy objects’ methods therefore wrap
the methods of the underlying object to enforce control-flow guards
that intervene whenever object recipients attempt to call one of the
object’s methods.

For each object-oriented API imported by an untrusted module,
we write a wrapper in which every shared object argument is
replaced by a proxy object. Thus, when a trusted module attempts
to call a method of an object, it actually calls a wrapper method
of the proxy object. Control then flows to a dispatch subroutine.
The dispatcher pops the return address to determine the index of
the method being called, and consults the stack’s this pointer to
identify the object. Based on this information, it selects and tail-calls
a mediator that wraps and secures the original method according
to its type signature. If original method involves object arguments,
the mediator replaces them with corresponding proxies. Finally,
the mediator passes the control to the original method.

The wrappers must also sometimes introduce new proxy objects
in the reverse direction (i.e., during trusted-to-untrusted cross-
module calls and returns) in order to secure methods that return
new objects or interfaces. For example, if a trusted callee returns an
object whose methods accept objects as arguments, the untrusted
caller instead receives a proxy object whose wrappers substitute
objects arguments with proxies before passing control back to the
trusted module.

To assure complete mediation of these interfaces (which are often
large and complex), our approach is conservative: The CFI policy
is defined to block all cross-module control-flow edges except the
ones implemented by the mediators. Inadvertent omission of an
API from the mediator library therefore provokes a security abort at
runtime. In practice, the mediator code is synthesized automatically
from the interface descriptions (e.g., C header or IDL files), so that
all documented interface members are automatically included.

Our approach defends against the attack shown in Section 2.
After hardening the code in Listing 1, the shared object o1 is replaced
by its proxy. Original method RegisterEventCallbackInterface
instead invokes a wrapper method of the proxy object of o1. This
wrapper method reroutes the control to the mediator of Regis-
terEventCallbackInterface. The mediator finds that object o2

Table 1: Interoperating COMmodules used in case study

File Size Code Segment Size

Module Old (KB) New (KB) Increase (%) Old (KB) New (KB) Increase (%)
Rewriting
Times (s)

mspaint.exe 6228 7094 14 557 886 59 104.78
mfc42u.dll 1137 2583 127 1025 1480 44 203.91

Table 2: COM interfaces

Interface # Methods DLL

IAccPropServices 12 oleacc
IDataObject 12 ole32
IEnumWIA_DEV_INFO 8 ole32
IMessageFilter 6 ole32
IMarshal 9 ole32
IMoniker 23 ole32
IOleClientSite 9 ole32
IPropertyStore 8 propsys
IRunningObjectTable 10 ole32
IShellFolder 13 shell32
IShellItem 8 shell32
IShellItem2 21 shell32
IStream 14 ole32
IUIApplication 6 uiribbon
IUICollection 10 uiribbon
IUICommandHandler 5 uiribbon
IUIFramework 12 uiribbon
IUIImage 4 uiribbon
IUIImageFromBitmap 4 uiribbon
IUIRibbon 6 uiribbon
IUISimplePropertySet 4 uiribbon
IUnknown 3 uiribbon
IWiaDevMgr 12 wiaservc
IWiaEventCallback 4 ole32
IWICBitmapDecoder 14 windowscodecs
IWICBitmapEncoder 13 windowscodecs
IWICBitmapFrameDecode 11 windowscodecs
IWICBitmapFrameEncode 14 windowscodecs
IWICImagingFactory 28 windowscodecs
IWICMetadataBlockReader 7 windowscodecs
IWICMetadataBlockWriter 12 windowscodecs
IWICStream 18 windowscodecs
IXMLDOMDocument 82 msxml6
IXMLDOMDocument2 88 msxml6

is passed from the untrusted module to the trusted module. Then
the proxy object of object o2 is generated and handed to the trusted
module. Hardware write-protections prevent the proxy object’s
vtable from being corrupted. Therefore, even without modifying the
trusted module, the AddRef call is guaranteed to target a permitted
destination.

4 CASE STUDY
To demonstrate how our approach can harden closed-source, binary
software against CODE-COOP attacks, and to exhibit some of the

Table 3: APIs with object exchanges

API DLL Object Type

CoCreateInstance ole32 OUT
CoDisconnectObject ole32 IN
CoGetClassObject ole32 OUT
CoLockObjectExternal ole32 IN
CoRegisterMessageFilter ole32 IN & OUT
CreateFileMoniker ole32 OUT
CreateStreamOnHGlobal ole32 OUT
DoDragDrop ole32 IN
GdipLoadImageFromStream gdiplus IN
GdipSaveImageToStream gdiplus IN
GetRunningObjectTable ole32 OUT
OleCreateLinkFromData ole32 IN & OUT
OleGetClipboard ole32 OUT
OleSetClipboard ole32 IN
OleIsCurrentClipboard ole32 IN
OleIsRunning ole32 IN
OleRun ole32 IN
RegisterDragDrop ole32 IN
SafeArrayPutElement olaeut32 IN
SHBindToParent shell32 OUT
SHCreateShellItem shell32 IN & OUT
SHGetDesktopFolder shell32 OUT

challenges, we next discuss our experience hardening a simple but
representative Windows application: Microsoft Paint.

4.1 Object-oriented Design
Paint is a simple desktop application that has been included with
all versions of Windows. Like most commercial software, it does
not access system kernel services directly; rather, its design extends
system-provided classes to construct objects that inherit kernel-
accessing functionalities from their base methods. On Windows,
such applications typically draw their base classes from the Mi-
crosoft Foundation Class (MFC) Library—a shared C++ library de-
signed for event-driven software development. A large percentage
of all Windows software is built atop MFC, but this design presents
great challenges for traditional CFI because of the complex object
exchanges it engenders at the binary level. Surveys of the prior
CFI literature (cf., [25]) exhibit no examples prior to OFI where CFI
was successfully evaluated against an MFC-based product without
opening CODE-COOP vulnerabilities.

Since MFC is extremely tightly coupled to the applications with
which it links, our approach treats both Paint and MFC as untrusted,
application-level modules and leaves the others as trusted. To do
so, we applied our automated binary retrofitting (built atop the OFI

Table 4: APIs with callback pointers

API DLL

_beginthread msvcrt
_beginthreadex msvcrt
_initterm msvcrt
_onexit msvcrt
CallWindowProc user32
ChooseColor comdlg32
ChooseFont comdlg32
DialogBoxIndirectParam user32
DialogBoxParam user32
CreateDialogIndirectParam user32
CreateDialogParam user32
EnumFonts user32
EnumFontFamilies gdi32
EnumFontFamiliesEx gdi32
EnumObjects gdi32
EventRegister advapi32
GetOpenFileName comdlg32
GetSaveFileName comdlg32
PrintDlg comdlg32
RegisterClass user32
RegisterClassEx user32
SendMessageCallback user32
SetAbortProc gdi32
SetProp user32
SetWindowLong user32
SetWindowsHookEx user32

framework) to the Paint (mspaint.exe) and MFC (mfc42u.dll) binary
libraries, and placed the retrofitted MFC in the retrofitted Paint
application’s load path, thereby overriding the system-level MFC.
Table 1 reports the percentage increase of the file size and code
segments, as well as the time taken to rewrite each module. After
instrumenting, we manually tested all program features of Paint
systematically. All features we tested exhibited full functionality.
We measure the runtime overhead imposed by our approach as the
ratio of time spent within the wrapper modules to the total runtime.
Paint has an overhead of 0.38%.

4.2 API Surface
Table 3 lists all the system APIs with object arguments that Paint
and MFC called during our experiments. There are 22 APIs from
4 different trusted modules. Column 3 reports the type of object
argument in each API. An OUT-object argument (e.g., in CoCreate-
Instance) is usually an interface pointer returned from a trusted
module. An IN-object argument (e.g., in CoLockObjectExternal)
is usually an interface pointer that an untrusted module passes
to a trusted module. More complex APIs can have IN-object and
OUT-object arguments together. For example, API SHCreateShell-
Item passes an IShellFolder interface pointer to shell32.dll and
receives an address of a pointer to a IShellItem interface after the
API returns.

4.3 Object Exchanges
Table 2 reports the interfaces mediated by our guard code when
running Paint and MFC. Column 2 reports the number of virtual
methods (including inherited methods if any) in the vtable of each
interface, and Column 3 reports the trusted module to which the
interface belongs. Overall, we mediate 34 interfaces and 510 meth-
ods from 8 trusted modules. Among the interfaces and methods in
Table 2, Table 5 reports the methods that have object arguments.
An object argument can also be an OUT-object or an IN-object,
similar to the APIs reported in Table 3.

As discussed in Section 3, for each API and virtual method, we
synthesized a mediator in which OFI recursively substitutes both
types of object arguments with appropriate proxy objects immedi-
ately before the cross-module call and immediately after the cross-
module return.

4.4 Callbacks
Table 4 reports the APIs that have code pointers (callbacks) as
arguments. Such an argument can be a direct code pointer (e.g.,
in CallWindowProc), a pointer to an array of callbacks (e.g., in
initterm), or a pointer to a structure that has a callback in one or
more of its fields (e.g., in RegisterClass). Paint andMFC import 14
such APIs from 5 trusted modules. We implemented a mediator for
each of these APIs in which code pointer validation or sanitization
secures the code pointer exchange against hijacking attacks.

5 FUTUREWORK
Although our approach successfully secures inter-module object
exchanges in the presence of unmodifiable (e.g., system) modules,
unmodified modules can still potentially contain other security
weaknesses that might leave retrofitted applications vulnerable
to attack. For example, if a trusted module retains a persistent
reference to an object, but stores that reference in an unsafe location
(e.g., memory that the retrofitting mechanism considers untrusted
and application-writable), then a malicious module could replace
the reference with a counterfeit object to implement a CODE-COOP
attack despite our defense.

Our current prototype mitigates such vulnerabilities by leverag-
ing software fault isolation (SFI) to isolate module data and stack
segments from cross-module writes. However, this approach cannot
support modules that need direct access to each other’s memory
(e.g., when trusted modules store object references into writable
buffers provided by untrusted modules).

An important line of future research therefore entails the devel-
opment of binary-level code analyses and tools that can discover the
memory safety policies implicitly expected and enforced by inter-
operating modules with differing protection schemes. Future work
should use such analyses to derive appropriate memory and control-
flow safety policies for application-level retrofitting algorithms to
enforce in order to ensure safety in the presence of unmodifiable
libraries that have differing security expectations and requirements.

6 CONCLUSION
We have presented a modular approach that hardens application-
level software without the need to modify interoperating modules
on which the application replies. Our interface-driven approach

presented in this paper mediates object exchanges across inter-
module trust boundaries with proxy objects, and therefore modules
that obeys their interface specifications get protected when they
call proxy object methods. We showed that coupled with OFI and
CFI, the approach can effectively thwart CODE-COOP attacks by
completely mediating the interfaces between trusted and untrusted
modules.

ACKNOWLEDGMENTS
The research reported herein was supported in part by ONR awards
N00014-14-1-0030 and N00014-17-1-2995, AFOSR award FA9550-
14-1-0119, NSF awards #1513704 and #1834215, and an NSF I/UCRC
award from Lockheed Martin.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow

integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS), pages 340–353, 2005.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1), 2009.

[3] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. Protecting C++ dynamic
dispatch through vtable interleaving. In Proceedings of the 23rd Network and
Distributed System Security Symposium (NDSS), 2016.

[4] Stephen J. Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. Booby
trapping software. In Proceedings of the 2013 on New Security ParadigmsWorkshop
(NSPW), pages 95–106, 2013.

[5] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per
Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and
Michael Franz. It’s a TRaP: Table randomization and protection against function-
reuse attacks. In Proceedings of the 22nd ACM Conference on Computer and
Communications and Security (CCS), pages 243–255, 2015.

[6] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C.
Necula. XFI: Software guards for system address spaces. In Proceedings of the
7th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 75–88, 2006.

[7] Robert Gawlik and Thorsten Holz. Towards automated integrity protection of
C++ virtual function tables in binary programs. In Proceedings of the 30th Annual
Computer Security Applications Conference (ACSAC), pages 396–405, 2014.

[8] István Haller, Enes Göktas, Elias Athanasopoulos, Georgios Portokalidis, and
Herbert Bos. ShrinkWrap: VTable protection without loose ends. In Proceedings
of the 31th Annual Computer Security Applications Conference (ACSAC), pages
341–350, 2015.

[9] Norm Hardy. The confused deputy: (or why capabilities might have been in-
vented). ACM SIGOPS Operating Systems Review, 22(4):36–38, 1988.

[10] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. SafeDispatch: Securing C++
virtual calls from memory corruption attacks. In Proceedings of the 21st Network
and Distributed System Security Symposium (NDSS), 2014.

[11] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. Code-pointer integrity. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 147–163, 2014.

[12] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC architecture.
In Proceedings of the 15st USENIX Security Symposium, 2006.

[13] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael
Franz. Opaque control-flow integrity. In Proceedings of the 22nd Network and
Distributed System Security Symposium (NDSS), 2015.

[14] Ben Niu and Gang Tan. Modular control-flow integrity. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 577–587, 2014.

[15] Jorge Lucangeli Obes and Justin Schuh. A tale of two pwnies (part 1). Chromium
Blog, May 2012. https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.
html.

[16] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-grained control-flow
integrity through binary hardening. In Proceedings of the 12th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), pages 144–164, 2015.

[17] Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict protection for
virtual function calls in COTS C++ binaries. In Proceedings of the 22nd Network
and Distributed System Security Symposium (NDSS), 2015.

[18] Ahmad-Reza Sadeghi, Lucas Davi, and Per Larsen. Securing legacy software
against real-world code-reuse exploits: Utopia, alchemy, or possible future? In

Proceedings of the 10th ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS), pages 55–61, 2015.

[19] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming.
In Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P), pages
745–762, 2015.

[20] Caroline Tice. Improving function pointer security for virtual method dispatches.
In GNU Cauldron Workshop, 2012.

[21] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow
integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security Symposium,
pages 941–955, 2014.

[22] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawlowski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. A tough call: Mitigating advanced code-reuse attacks at the binary
level. In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P),
pages 934–953, 2016.

[23] RobertWahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles (SOSP), pages 203–216, 1993.

[24] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and Dengguo
Feng. Binary code continent: Finer-grained control flow integrity for stripped
binaries. In Proceedings of the 31st Annual Computer Security Applications Confer-
ence (ACSAC), pages 331–340, 2015.

[25] Wenhao Wang, Xiaoyang Xu, and Kevin W. Hamlen. Object flow integrity. In
Proceedings of the 24th ACMConference on Computer and Communications Security
(CCS), pages 1909–1924, 2017.

[26] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In
Proceedings of the 19th ACMConference on Computer and Communications Security
(CCS), pages 157–168, 2012.

[27] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Securing
untrusted code via compiler-agnostic binary rewriting. In Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC), pages 299–308, 2012.

[28] Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,
and Dawn Song. VTrust: Regaining trust on virtual calls. In Proceedings of the
23rd Network and Distributed System Security Symposium (NDSS), 2016.

[29] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song.
VTint: Protecting virtual function tables’ integrity. In Proceedings of the 22nd
Network and Distributed System Security Symposium (NDSS), 2015.

[30] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCa-
mant, Dawn Song, andWei Zo. Practical control flow integrity and randomization
for binary executables. In Proceedings of the 34th IEEE Symposium on Security
and Privacy (S&P), pages 559–573, 2013.

[31] Mingwei Zhang and R. Sekar. Control flow integrity for COTS binaries. In
Proceedings of the 22nd USENIX Security Symposium, pages 337–352, 2013.

https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html

Table 5: Methods with object exchanges

Interface Method(s) Object Type

IRunningObjectTable IRunningObjectTable::Register IN
IRunningObjectTable::GetObject IN & OUT

IShellFolder IShellFolder::EnumObjects OUT

IShellItem2 IShellItem2::QueryInterface OUT
IShellItem2::GetPropertyStore OUT

IStream IStream::QueryInterface OUT

IUIApplication IUIApplication::OnViewChanged IN
IUIApplication::OnCreateUICommand OUT
IUIApplication::OnDestroyUICommand IN

IUICollection IUICollection::Add IN
IUICollection::GetItem OUT
IUICollection::Insert IN
IUICollection::Replace IN

IUICommandHandler IUICommandHandler::Execute IN
IUICommandHandler::UpdateProperty IN

IUIFramework IUIFramework::QueryInterface OUT
IUIFramework::Initialize IN

IUIImageFromBitmap IUIImageFromBitmap::QueryInterface OUT
IUIImageFromBitmap::CreateImage OUT

IUIRibbon IUIRibbon::LoadSettingsFromStream IN
IUIRibbon::SaveSettingsToStream IN

IUISimplePropertySet IUISimplePropertySet::QueryInterface OUT

IUnknown IUnknown::QueryInterface OUT

IWiaDevMgr IWiaDevMgr::RegisterEventCallbackInterface IN & OUT

IWiaEventCallback IWiaEventCallback::QueryInterface OUT

IWICBitmapDecoder IWICBitmapDecoder::QueryInterface OUT
IWICBitmapDecoder::GetFrame OUT

IWICBitmapEncoder IWICBitmapEncoder::Initialize IN
IWICBitmapEncoder::CreateNewFrame IN & OUT

IWICBitmapFrameEncode IWICBitmapFrameEncode::QueryInterface OUT
IWICBitmapFrameEncode::Initialize IN
IWICBitmapFrameEncode::WriteSource IN

IWICImagingFactory IWICImagingFactory::CreateDecoderFromFilename OUT
IWICImagingFactory::CreateEncoder OUT
IWICImagingFactory::CreateStream OUT

IWICMetadataBlockReader IWICMetadataBlockReader::GetReaderByIndex OUT

IWICMetadataBlockWriter IWICMetadataBlockWriter::InitializeFromBlockReader IN

IWICStream IWICStream::InitializeFromIStream IN
IWICStream::InitializeFromIStreamRegion OUT

IXMLDOMDocument IXMLDOMDocument::QueryInterface OUT
IXMLDOMDocument::save IN

	Abstract
	1 Introduction
	2 Attack Example
	3 Technical Approach
	4 Case Study
	4.1 Object-oriented Design
	4.2 API Surface
	4.3 Object Exchanges
	4.4 Callbacks

	5 Future work
	6 Conclusion
	References

